
Crowd-Aware Robot Navigation for Pedestrians with Multiple Collision
Avoidance Strategies via Map-based Deep Reinforcement Learning

Shunyi Yao1,∗, Guangda Chen1,∗, Quecheng Qiu2, Jun Ma2, Xiaoping Chen1, and Jianmin Ji1,†

Abstract— It is challenging for a mobile robot to navigate
through human crowds. Existing approaches usually assume
that pedestrians follow a predefined collision avoidance strategy,
like social force model (SFM) or optimal reciprocal collision
avoidance (ORCA). However, their performances commonly
need to be further improved for practical applications, where
pedestrians follow multiple different collision avoidance strate-
gies. In this paper, we propose a map-based deep reinforcement
learning approach for crowd-aware robot navigation with
various pedestrians. We use the sensor map to represent the
environmental information around the robot, including its shape
and observable appearances of obstacles. We also introduce
the pedestrian map that specifies the movements of pedestrians
around the robot. By applying both maps as inputs of the
neural network, we show that a navigation policy can be trained
to better interact with pedestrians following different collision
avoidance strategies. We evaluate our approach under multiple
scenarios both in the simulator and on an actual robot. The
results show that our approach allows the robot to successfully
interact with various pedestrians and outperforms compared
methods in terms of the success rate.

I. INTRODUCTION

Many practical applications of mobile robots, like do-
mestic service robots [1] and office delivery robots [2],
require them to navigate through human crowds. It is a tough
challenge, as pedestrians around the robot can not be simply
considered as regular static or dynamic obstacles and the
robot needs to interact with a crowd of people in a socially
compliant manner. Existing crowd navigation approaches
commonly make assumptions on the movements [3] or
the collision avoidance strategies [4], [5] of pedestrians.
However, the performance of these approaches is usually
limited when pedestrians behave differently.

On the other hand, deep reinforcement learning (DRL)
approaches have been applied for robot navigation with
promising results [6]–[8]. Recently, DRL approaches are
also applied for crowd navigation. Everett et al. [9] and
Chen et al. [10] assume that pedestrians follow a certain
collision avoidance strategy, i.e., optimal reciprocal collision

The work is partially supported by the National Key Research and Devel-
opment Program of China (No. 2018AAA0100500), CAAI-Huawei Mind-
Spore Open Fund, Anhui Provincial Development and Reform Commission
2020 New Energy Vehicle Industry Innovation Development Project “Key
System Research and Vehicle Development for Mass Production Oriented
Highly Autonomous Driving”, and Key-Area Research and Development
Program of Guangdong Province 2020B0909050001.

1 School of Computer Science and Technology, University of Science
and Technology of China (USTC), Hefei 230026, China

2 School of Data Science, USTC, Hefei 230026, China
∗ These authors contributed equally to the work. {ustcysy,

cgdsss}@mail.ustc.edu.cn
† Corresponding author. jianmin@ustc.edu.cn

avoidance (ORCA) [5]. Moreover, both approaches require
perfect sensing, as the inputs of their networks include exact
positions and movements of surrounding obstacles. Gulden-
ring et al. [11] assume pedestrians following social force
model (SFM) [4] and use the sensor data directly. Notice
that, above approaches do not distinguish the information
between regular obstacles and pedestrians, which increases
the difficulty for the trained model to handle pedestrians with
multiple collision avoidance strategies.

In this paper, we propose a map-based DRL approach
for crowd navigation with pedestrians following multiple
different collision avoidance strategies. We find out that
it is more effective for the trained model to handle vari-
ous pedestrians by distinguishing the information between
regular obstacles and pedestrians. In particular, following
our previous work [12] for robot navigation among reg-
ular obstacles, we use the sensor map to represent the
environmental information around the robot, including its
shape and observable appearances of obstacles, which can be
directly generated from robot’s sensor information. We also
introduce the pedestrian map that specifies the movements of
pedestrians around the robot in the local grid map. Then we
apply the proximal policy optimization (PPO) algorithm [13]
to train a convolutional neural network that directly maps
both maps and the robot’s target pose into low-level robot
control commands. Note that, the information of pedestrians
is specified by the pedestrian map, which can ease the
training of the network to interact with various pedestrians.
We first train the neural network in a specified simulator with
static obstacles and pedestrians following two strategies, i.e.,
SFM and ORCA, and then we deploy the trained model to
an actual robot for its navigation.

We evaluate our approach under multiple scenarios both
in the simulator and on an actual robot. Experimental results
show that, by applying both the sensor map and the pedes-
trian map, the network allows the robot not only to avoid
regular obstacles but also pedestrians with different collision
avoidance strategies. We compare our approach to a dynamic
obstacle avoidance method with perfect sensing and a DRL
method only using the sensor map. The results show that our
approach outperforms these methods in terms of the success
rate. We deploy the trained model to a robot and evaluate its
performance in real-world environments, like corridors and
halls. The demonstration video is also available. Our main
contributions are summarized as follows:
• We propose a DRL-based crowd navigation method that

allows pedestrians to follow multiple different collision
avoidance strategies. The experimental results show that



the approach is effective and outperforms compared
methods in terms of the success rate.

• We apply both the sensor map and the pedestrian map
as the inputs of the neural network. We show that, by
distinguishing the information between regular obstacles
and pedestrians, the network allows the robot not only
to avoid regular obstacles but also various pedestrians.

• We show that, the map-based approach allows the robot
to generate the sensor map and the pedestrian map from
multiple sensor data or sensor fusion results [12], which
make it to be effective and easy to be deployed to an
actual robot.

II. RELATED WORK

Existing dense crowd navigation methods can be generally
divided into two categories, i.e., trajectory-based and rule-
based. A trajectory-based method first predicts the future
path of other agents in the scene, and then selects the
optimal path based on the prediction [14], [15]. This type
of methods normally require a high computational cost and
their performances are significantly affected by the accuracy
of the prediction.

On the other hand, a rule-based method commonly as-
sumes that all agents in the environment follow the same
collision avoidance strategy. Helbing and Molnar [4] propose
social force model (SFM), which assumes that pedestrians
are subject to three main forces in the environment: the
influence of the driving force, the force between people, and
the force between people and obstacles. The resultant force
of these forces produces the acceleration of the pedestrian’s
movement. Reciprocal velocity obstacles (RVO) [3] and
ORCA [5] assume that the agents can perfectly perceive
the movements of others and cooperate with each other to
generate collision-free movements respectively. Note that,
the performance of these methods is usually limited when
pedestrians behave differently.

Recently, imitation learning methods have been applied
for crowd navigation. Kretzschmar et al. [16] propose an
approach that allows a mobile robot to learn the behavior
of interacting agents such as pedestrians from demonstration
via Inverse Reinforcement Learning. Liu et al. [17] imitate
the well-tuned planner, which considers the costmap1 of the
robot as the input and outputs robot’s control commands, i.e.,
linear and angular velocities. Tai et al. [18] train the neural
network in Gazebo simulator2 with simulation pedestrians
driven by SFM. However, these methods require a large
number of labeled data for training.

DRL methods are also applied for crowd navigation. Fan
et al. [19] consider the sensor data of the 2D laser scanner
as the input of the policy network and trains the network in
simulation environments with multiple robots driven by the
same policy network, which allows the robots to properly
interact with each other. Similarly, Chen et al. [20] consider
the movement information of other agents as the input of the

1http://wiki.ros.org/costmap_2d.
2http://gazebosim.org/.

policy network and trains the network with multiple robots
driven by the same network in [21]. In our previous work
[12], the egocentric sensor map is considered as the input of
the policy network, which is also trained with multiple robots
driven by the same network. Notice that, these methods do
not distinguish the information between regular obstacles and
pedestrians.

On the other hand, Güldenring et al. [11] use SFM to
drive pedestrians in their training environments. Meanwhile,
the shapes and movements of pedestrians’ legs are carefully
modeled in the simulator to distinguish pedestrians with other
obstacles. Chen et al. [10] use ORCA to drive pedestrians
in their training environments and considers the movement
data of pedestrians as the input, where regular obstacles are
considered as special agents that do not move. Note that,
above methods assume that pedestrians only follow a certain
collision avoidance strategy, which is often not appropriate
in practice.

Liu et al. [22] use two strategies, i.e., ORCA and moving
forward, to drive pedestrians respectively. However, it is hard
to generate the approach for pedestrians with other collision
avoidance strategies, like SFM. In this paper, we distinguish
the information between regular obstacles and pedestrians
and propose a map-based DRL approach for crowd naviga-
tion with pedestrians following multiple different strategies.

III. PRELIMINARIES

In DRL, the problem is specified as a Markov decision
process (MDP). An MDP is a tuple M = (S,A,P,R,γ), where
S is the state space, A is the action space, P represents
the transition probability between states, R is the reward
function, and γ is the discount factor in (0,1). The purpose
of DRL is to find a strategy π∗ that maximizes the expected
cumulative return of each trajectory τ .

We use proximal policy optimization (PPO) [13] to train
our crowd navigation policy. PPO maintains two networks
during the training, i.e., a policy network and a value
network. It uses importance sampling when updating the
parameters, so that each sampled data can be applied multiple
times. PPO also introduces the clip operation when the policy
is updated to reduce the gap between the behavior policy and
the target policy. We use generalized advantage estimator
(GAE) [23] to estimate the advantage function used in PPO.

IV. APPROACH

In this section, we first specify key components of DRL
for crowd navigation. Then, we describe its training process.

A. Reinforcement Learning Components

1) Observation space: An observation is composed of
three parts, i.e., the sensor map, the three-channel pedestrian
map, and the robot’s target pose.

Sensor map is specified by an egocentric local grid map
Msens of the robot. As illustrated in Fig. 1, the sensor map
represents the environmental information around the robot,
including its shape and observable appearances of obstacles.
The sensor map is constructed from a costmap that can be

http://wiki.ros.org/costmap_2d
http://gazebosim.org/


generated from various sensor data, like outputs of 2D lasers
or depth cameras [12].

Pedestrian map is a local grid map Mped with three
channels that indicates the location and speed of pedestrians
around the robot. As illustrated in Fig. 1, for a pedestrian
map, the first channel specifies locations of surrounding
pedestrians and the rest two channels specify the speeds of
corresponding pedestrians for x-axis and y-axis, respectively.

Target pose gt = (xt , yt , α t ) at time step t consists of the
target position (xt , yt) and the target orientation α t of the
robot.

2) Action space: In this paper, we implement the ap-
proach on a differential drive robot that follows desired
speed commands. Then an action at at time step t consists
of a linear velocity vt and an angular velocity ω t , i.e.,
at = (vt , ω t). We implement both discrete and continuous
actions for the robot. In specific, for discrete actions, we
set a linear velocity vt ∈ {0.0,0.2,0.4,0.6} and an angular
velocity ω t ∈ {0.9,−0.6,−0.3,0.0,0.3,0.6,0.9}. For contin-
uous actions, we set vt ∈ [0, 0.6] and ω t ∈ [−0.9, 0.9]. Both
discrete and continuous actions can be directly performed by
the differential robot in our experiments. Notice that, vt ≥ 0,
i.e., moving backwards is not allowed, due to the lack of rear
sensors.

3) Reward function: In crowd navigation, the objective
of a navigation policy is to minimize the arriving time of
the robot without collision. In our approach, we specify the
reward rt at time step t as

rt = rt
goal + rt

sa f e + rt
step + rt

shaping,

rt
goal =

{
rarr if target is reached,
0 otherwise,

rt
sa f e =

 rcol if collision,
−ε1

(
1−dt

min

)
if dt

min < 1,
0 otherwise,

rt
shaping = ε2

(∥∥pt−1−pg
∥∥−∥∥pt −pg

∥∥) ,
where rarr > 0 and rt

goal specifies the reward when the robot
arrives its target, rcol < 0 denotes the penalty for the collision,
−ε1

(
1−dt

min

)
denotes the penalty when the robot is close

to a pedestrian, i.e., dt
min denotes the minimal distance from

the robot to its closest pedestrian, ε1 is a hyper-parameter,
rt

step < 0 denotes a small penalty to encourage short paths,
pt , pg denote the positions of the robots and its target, ε2
is a hyper-parameter, and the reward shaping item rt

shaping
encourages the robot to move toward the target.

In our experiments, we set rarr = 500, rcol =−500, ε1 =
50, ε2 = 200, and rt

step =−5.
4) Network architecture: The architecture of the convo-

lutional network for the crowd navigation policy in PPO is
shown in Fig. 1. The input of the network consists of the
sensor map, the pedestrian map, and the target pose. For
discrete actions, the network outputs a 28-dimensional vector
from a softmax layer to choose the pair of linear and angular
velocities. For continuous actions, the network outputs the
mean of the action sampled from a Gaussian distribution.

Sensor
Map

Pedestrian
Map

Target
Pose

Fig. 1. The architecture of the crowd navigation policy network.

In particular, the network first produces feature maps for
the corresponding sensor map and the pedestrian map using
three convolutional layers and three max pooling layers.
Followed by a fully-connected layer with 512 units, these
feature maps are converted to a 512 dimensional vector. The
network also projects the local goal to a 3 dimensional vector.
Then the network combines both vectors and feeds them
to two fully-connected layers with 512 units. At last, for
discrete actions, the network uses a softmax layer with 28
units to choose the pair of linear and angular velocities from
corresponding values. For continuous actions, the network
applies a fully-connect layer with 2 units without activation
to produce the mean of the linear velocity vt and the mean
of the angular velocity ω t . Then the continuous actions is
sampled from the Gaussian distribution N (at

mean, at
logstd),

where at
logstd is the log standard deviation generated by a

standalone network and at
mean = (vt ,ω t). A clip function is

also applied to ensure that the resulting actions are valid in
the action space.

The value network has the same architecture as the policy
network, except its last layer is modified to only output the
value of the state.

B. Training with Multiple Strategies and Environments

We train the network in environments that are constructed
by a customized simulator based on OpenCV3. We extend the
simulator from the one used in [12] to add pedestrians driven
by different collision avoidance strategies. In particular,
we add the shapes of pedestrians’ legs and corresponding
walking movements as in [11] to the simulator. We also
implement two collision avoidance strategies, i.e., ORCA4

and SFM5 to drive pedestrians in the simulator.
As illustrated in Fig. 2, we specify two scenarios for

the training, i.e., random scenario and circular scenario. In
particular, an environment in random scenario contains two
robots, four pedestrians, and four static obstacles, which
would randomly choose locations for obstacles, the starting
and target positions of robots and pedestrians. Then the
robots in the environment would be driven by the policy
network and pedestrians would be driven either by ORCA
or SFM. Note that, there are two robots sharing the same
navigation policy in the environment and they also need

3https://opencv.org/.
4https://github.com/snape/RVO2.
5https://github.com/chgloor/pedsim.

https://opencv.org/
https://github.com/snape/RVO2
https://github.com/chgloor/pedsim


(a) Random scenario (b) Circular scenario

Fig. 2. Two scenarios for the training, where the blue digital circles
represent the target positions of robots with the corresponding number, red
lines specify the straight paths from the starting position to the target for
robots, green spots denote the legs’ trajectories of pedestrians, black blocks
denote static obstacles, and blue boxes on the right illustrate sensor maps
of each robot.

to avoid collisions with each other. As discussed in [12],
this helps the network to learn the ability of multi-robot
obstacle avoidance, which can also help the robot to avoid
pedestrians. Training in environments of random scenario
enables the policy network to avoid static and dynamic
obstacles, and interact with pedestrians. An environment in
circular scenario contains two robots and four pedestrians,
which would randomly place robots and pedestrians on a
circle with a random radius. Training in environments of
circular scenario enhances the policy network to interact with
pedestrians.

In the training process, we extend PPO to collect experi-
ences from four different environments in parallel at each
iteration. In particular, we construct two environments of
random scenario and drive pedestrians in both environments
with ORCA and SFM, respectively. We also construct two
environments of circular scenario with pedestrians driven by
ORCA and SFM, respectively. Then we train the network
based on experiences generated from these four environ-
ments.

V. EXPERIMENTS

In this section, we evaluate our PPO based crowd navi-
gation approach in both the simulation and the real world.
We first specify details of our implementation including the
hyper-parameters, hardware, and software for the training.
Then, we quantitatively evaluate the performance of our
crowd navigation policy in various simulation scenarios and
compare it with other approaches. We also deploy the trained
model to a differential drive robot and test its navigation
performance in the real world. Both qualitative and quantita-
tive experiments show that our approach allows the robot to
successfully interact with various pedestrians and is effective
with a high success rate. The demonstration video is also
available.

A. Reinforcement Learning Setup

We trained our crowd navigation policy for the differential
drive robot following the PPO algorithm with the hyper-
parameters listed in Table I.

TABLE I
HYPER-PARAMETERS OF THE TRAINING ALGORITHM

Hyper-parameter Value

learning rate for policy 5×10−5

learning rate for value 1×10−3

discount factor (γ) 0.99
replay buffer size 2048

image size 48×48
maximum episode length 200

robot radius 0.17
maximum pedestrian speed 0.5

0 1 2 3 4 5

Epoch ×103

−600

−400

−200

0

200

400

600

800

1000

E
xp

ec
te

d
R

et
ur

n

PPO-PSC
PPO-PSD
PPO-SD

(a) Reward curve

0 1 2 3 4 5

Epoch ×103

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

PPO-PSC
PPO-PSD
PPO-SD

(b) Success rate curve

Fig. 3. The average reward curve and the success rate curve of approaches.

Both the policy network and the value network are
implemented in TensorFlow6 and trained with the Adam
optimizer [24]. We also want to train network on MindSpore7

, which is a new deep learning computing framework. These
problems are left for future work. The training hardware is a
computer with an i9-9900k CPU and an NVIDIA Titan RTX
GPU.

We use PPO-PSC to denote our PPO based approach with
continuous actions, PPO-PSD to denote our PPO based ap-
proach with discrete actions. We compare our approaches to
ORCA8 with perfect sensing and PPO-SD, the modification
of our approach PPO-PSD by only using the sensor map.

Fig. 3 shows the average reward curve and the success
rate curve of the three PPO based approaches, i.e., PPO-PSC,
PPO-PSD, and PPO-SD. It can be seen that the introduction
of the pedestrian map can improve the performance of the
PPO based crowd navigation.

B. Experiments on Simulation Scenarios

1) Performance metrics: We introduce three metrics to
evaluate the performance of approaches for crowd navigation
as the following:
• Success rate (π̄): the ratio of the episodes that end with

robots reaching their targets without collision.
• Extra time (t̄): the time required for the robot to success-

fully reach its target without collision minus the time for
the robot to drive straight to its target with the maximum
speed.

6https://www.tensorflow.org/.
7https://www.mindspore.cn/.
8With a slight abuse of notation, we use ORCA here to denote the

corresponding crowd navigation policy for the robot.

https://www.tensorflow.org/
https://www.mindspore.cn/


• Average angular velocity change (∇ω): the average
changes of the angular velocity at each step, which
reflects the smoothness of the trajectory.

2) Comparative experiments: Now we compare the per-
formance of four crowd navigation approaches, i.e., ORCA,
PPO-SD, PPO-PSC, and PPO-PSD, in simulation environ-
ments of random and circular scenarios.

Table II summarizes the average results of four approaches
in 500 different environments of each scenario, where pedes-
trians are driven by ORCA and SFM. Note that the angular
velocity change value of ORCA in the table is empty, because
the classic ORCA algorithm only outputs the linear velocity
in the x and y directions and not the angular velocity.

Note that, ORCA requires every moving agents to coop-
erate with each other in the environment. Then there will be
collisions between pedestrians in environments, where some
pedestrians are driven by ORCA and some are driven by
SFM, and these environments are not applicable for testing
the performance of crowd navigation approaches.

TABLE II
PERFORMANCE OF APPROACHES FOR PEDESTRIANS WITH ORCA AND

SFM

Environments Methods π̄ t̄ Oω

Random scenario with ORCA
ORCA 0.464 2.97 -

PPO-SD 0.856 3.60 0.63
PPO-PSC 0.862 5.64 0.74
PPO-PSD 0.936 4.83 0.57

Circular scenario with ORCA
ORCA 0.862 7.54 -

PPO-SD 0.916 4.25 0.82
PPO-PSC 0.948 5.18 1.02
PPO-PSD 0.994 4.87 0.57

Random scenario with SFM
ORCA 0.318 1.53 -

PPO-SD 0.840 3.45 0.63
PPO-PSC 0.873 4.90 0.74
PPO-PSD 0.968 4.99 0.56

Circular scenario with SFM
ORCA 0.216 1.43 -

PPO-SD 0.902 4.49 0.84
PPO-PSC 0.924 6.22 0.97
PPO-PSD 0.996 5.90 0.63

Table II shows that, PPO based approaches allow the robot
to successfully interact with pedestrians driven either by
ORCA or SFM. Moreover, the introduction of the pedestrian
map can improve the performance. PPO-PSD outperforms
others in terms of the success rate.

Fig. 4 illustrates robot’s trajectories generated by different
approaches, where the trajectory generated by ORCA leads
the robot to be stuck due to nearby obstacles and pedestrians,
the trajectory generated by PPO-SD leads the robot to collide
with a pedestrian as the pedestrian map is not considered in
it, and both PPO-PSC and PPO-PSD successfully drive the
robot to its target.

The experimental results show that our approach PPO-PSD
is effective and outperforms others.

0 1 2 3 4 5 6 7 8 9
x [m]

0

1

2

3

4

5

6

7

8

9

y
[m

]

(a) Trajectories by ORCA

0 1 2 3 4 5 6 7 8 9
x [m]

0

1

2

3

4

5

6

7

8

9

y
[m

]

(b) Trajectories by PPO-SD

0 1 2 3 4 5 6 7 8 9
x [m]

0

1

2

3

4

5

6

7

8

9

y
[m

]

(c) Trajectories by PPO-PSC

0 1 2 3 4 5 6 7 8 9
x [m]

0

1

2

3

4

5

6

7

8

9

y
[m

]

(d) Trajectories by PPO-PSD

Fig. 4. Robot’s trajectories generated by different approaches. The blue
spots denote the trajectories of the robot and other spots denote the
trajectories of pedestrians.

3) Pedestrian with multiple strategies: As specified in
Section IV-B, we train the network on both environments
with pedestrians driven by ORCA and SFM, respectively.
Here we compare this training process with alternatives.

Most existing crowd navigation approaches assume that
pedestrians follow a predefined collision avoidance strategy
and test their performance under the same strategy. Here
we share the configurations for the training environments,
except the collision avoidance strategies for pedestrians. We
introduce two variants of our PPO-PSD approach, i.e., PPO-
ORCA and PPO-SFM. In particular, PPO-ORCA is modified
from PPO-PSD by only considering pedestrians driven by
ORCA, and PPO-SFM is modified from PPO-PSD by only
considering SFM. With a slight abuse of notation, we also
use PPO-multi to denote our approach PPO-PSD.

We evaluate the three approaches, i.e., PPO-multi, PPO-
ORCA, and PPO-SFM, in environments of five scenarios.
In specific, ORCA-random (resp. SFM-random) denotes the
scenario from random scenario by only considering pedes-
trians driven by ORCA (resp. SFM), ORCA-circular (resp.
SFM-circular) denotes the scenario from circular scenario by
only considering pedestrians driven by ORCA (resp. SFM),
and PPO-circular denotes the scenario that only contains five
robots in its environment and randomly places the starting
and target positions of the five robots on a circle with a
random radius.

The performance of the three approaches on these five sce-
narios is shown in Fig. 5, i.e., the average success rate of each
approach in 500 different environments of each scenario.
The results show that PPO-SFM outperforms PPO-ORCA



SFM-random ORCA-random SFM-circular ORCA-circular PPO-circular

Enviroment

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s
R

at
e

PPO-multi PPO-SFM PPO-ORCA

Fig. 5. Success rate of three approaches on five scenarios.

on SFM-random and SFM-circular, PPO-ORCA outperforms
PPO-SFM on ORCA-random and ORCA-circular, and both
of the approaches do not perform well on PPO-circular.
PPO-multi (PPO-PSD) outperforms all other approaches in
environments of all five scenarios, which implies that our
training process is effective and allows the robot to suc-
cessfully interact with pedestrians driven either by ORCA
or SFM.

C. Deployment on Actual Robot

We deploy the trained model by PPO-PSD to an actual
differential drive robot to perform crowd navigation in the
real world.

As shown in Fig. 6, the robot is based on TurtleBot 2 with
Kobuki base and uses a Hokuyo UTM-30LX scanning laser
Rangefinder as the 2D laser sensor, a RealSense D455 depth
camera as the pedestrian tracking sensor. The robot equips
with two NVIDIA Jetson TX2 for the computation, where
one is used to detect and track pedestrians and the other is
used to run the trained network.

laser scanner

depth camera

Jetson TX2

Fig. 6. The robot and its evaluation environments. Environments with
paper boxes to serve as static obstacles (upper right) and walking pedestrians
(bottom right).

We use SPENCER people tracking framework [25] in
our implementation to track surrounding pedestrians of the
robot and generate the pedestrian map for the model. We
also replace the people detection module in SPENCER by
YOLOv3 [26] for the better detection. We use the costmap
generated by the laser sensor to construct the sensor map.

Both the sensor map and the pedestrian map have the fixed
size 6.0× 6.0m with the resolution 0.125m. We apply a
particular filter based state estimator to generate robot’s local
targets from its global path in navigation. Then we deploy
the trained model to be fed with these inputs and let the
differential robot execute the outputs, i.e., desired linear and
angular velocities, directly.

We evaluate the performance of crowd navigation of the
robot in following real-world scenarios.
• Static scenario: environments that randomly place mul-

tiple paper boxes and a suitcase to block the robot from
its starting position to its target.

• Dynamic scenario: environments that the robot needs
to pass through a hall while some pedestrians walking
around the robot and some paper boxes on its way.

• Corridor scenario: environments that the robot needs to
pass through a corridor while some pedestrians walking
towards the robot.

Notice that, the corridor in our experiments is quite narrow,
then it is challenging for crowd navigation in environments
of corridor scenario.

Our experiments show that the robot can interact with vari-
ous pedestrians successfully and accomplish navigation tasks
safely in most environments of these three scenarios. Fig. 7
and 8 illustrate the performance of the robot on the scenarios.
More experiments can be found in our demonstration video.
Note that, in few cases, the robot did not avoid the pedestrian
in front of it. As discussed in [19], a safety strategy can be
added to ensure the safety.

(a) Simple dynamic scenario

(b) Dense dynamic scenario

Fig. 7. Trajectories of the robot in environments of dynamic scenario.
(a) illustrates a simple environment where the global path of the robot is
a straight line to the target and the network drives the robot to avoid the
obstacles and the walking pedestrian. (b) illustrates a dense environment
with multiple pedestrians and static obstacles, where the network still needs
to drive the robot to avoid pedestrians walking towards it.

VI. CONCLUSIONS

In this paper, we argue that pedestrian with multiple
different collision avoidance strategies need to be handled by
crowd navigation approaches. To address this challenge, we
propose a PPO based crowd navigation approach that allows



(a) Corridor scenario

(b) Camera view

Fig. 8. Trajectories of robots in an environment of corridor scenario.
(a) illustrates the trajectories of the robot and the surrounding walking
pedestrians. (b) denotes the map of the environment and corresponding
trajectory of the robot (upper image), and illustrates the camera views when
the robot is at the corresponding dotted circles in the map (bottom image).

pedestrians driven by either ORCA or SFM. In particular,
we apply both the sensor map and the pedestrian map as the
inputs of the neural network. We show that distinguishing
the information between regular obstacles and pedestrians
improves the performance of crowd navigation. We also train
the network in both simulation environments with pedestrians
following ORCA and SFM respectively. We show that this
training process allows the robot to successfully interact with
various pedestrians. We also deploy the trained model to an
actual robot and evaluate its performance in the real world.
The experimental results show that our approach, PPO-PSD,
is effective and outperforms compared methods in terms of
the success rate.

Our work makes an improvement towards rapid and suc-
cessful crowd navigation. Moving forward, we will consider
more collision avoidance strategies for strategies and further
investigate the generalization of the trained model.

REFERENCES

[1] J. Forlizzi and C. DiSalvo, “Service robots in the domestic environ-
ment: a study of the roomba vacuum in the home,” in Proceedings of
HRI-2006, 2006, pp. 258–265.

[2] R. Simmons, R. Goodwin, K. Z. Haigh, S. Koenig, and J. O’Sullivan,
“A layered architecture for office delivery robots,” in Proceedings of
ICAA-1997, 1997, pp. 245–252.

[3] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in Proceedings of
ICRA-2008. IEEE, 2008, pp. 1928–1935.

[4] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

[5] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics research. Springer, 2011,
pp. 3–19.

[6] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in Proceedings of IROS-2017, 2017, pp. 31–36.

[7] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion control for mobile
robot navigation using machine learning: a survey,” arXiv preprint
arXiv:2011.13112, 2020.

[8] Y. Chen, C. Liu, B. E. Shi, and M. Liu, “Robot navigation in crowds
by graph convolutional networks with attention learned from human
gaze,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2754–
2761, 2020.

[9] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in Proceedings of IROS-2018, 2018, pp. 3052–3059.

[10] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforce-
ment learning,” in Proceedings of ICRA-2019, 2019, pp. 6015–6022.

[11] R. Güldenring, M. Görner, N. Hendrich, N. J. Jacobsen, and J. Zhang,
“Learning local planners for human-aware navigation in indoor envi-
ronments,” in Proceedings of IROS-2020, 2020, pp. 6053–6060.

[12] G. Chen, S. Yao, J. Ma, L. Pan, Y. Chen, P. Xu, J. Ji, and X. Chen,
“Distributed non-communicating multi-robot collision avoidance via
map-based deep reinforcement learning,” Sensors, vol. 20, no. 17, p.
4836, 2020.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[14] Z. Chen, C. Song, Y. Yang, B. Zhao, Y. Hu, S. Liu, and J. Zhang,
“Robot navigation based on human trajectory prediction and multiple
travel modes,” Applied Sciences, vol. 8, no. 11, p. 2205, 2018.

[15] B. D. Luders, G. S. Aoude, J. M. Joseph, N. Roy, and J. P. How,
“Probabilistically safe avoidance of dynamic obstacles with uncertain
motion patterns,” Tech. Rep., 2011.

[16] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
compliant mobile robot navigation via inverse reinforcement learning,”
The International Journal of Robotics Research, vol. 35, no. 11, pp.
1289–1307, 2016.

[17] Y. Liu, A. Xu, and Z. Chen, “Map-based deep imitation learning for
obstacle avoidance,” in Proceedings of IROS-2018, 2018, pp. 8644–
8649.

[18] L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant navi-
gation through raw depth inputs with generative adversarial imitation
learning,” in Proceedings of ICRA-2018, 2018, pp. 1111–1117.

[19] T. Fan, P. Long, W. Liu, and J. Pan, “Distributed multi-robot collision
avoidance via deep reinforcement learning for navigation in complex
scenarios,” The International Journal of Robotics Research, vol. 39,
no. 7, pp. 856–892, 2020.

[20] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion
planning with deep reinforcement learning,” in Proceedings of IROS-
2017, 2017, pp. 1343–1350.

[21] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforce-
ment learning,” in Proceedings of the ICRA-2017, 2017, pp. 285–292.

[22] L. Liu, D. Dugas, G. Cesari, R. Siegwart, and R. Dubé, “Robot nav-
igation in crowded environments using deep reinforcement learning,”
in Proceedings of IROS-2020, 2020, pp. 5671–5677.

[23] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” arXiv preprint arXiv:1506.02438, 2015.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[25] T. Linder, S. Breuers, B. Leibe, and K. O. Arras, “On multi-modal
people tracking from mobile platforms in very crowded and dynamic
environments,” in Proceedings of ICRA-2016. IEEE, 2016, pp. 5512–
5519.

[26] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.




