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Abstract— Existing navigation policies for autonomous robots
tend to focus on collision avoidance while ignoring human-
robot interactions in social life. For instance, robots can
pass along the corridor safer and easier if pedestrians notice
them. Sounds have been considered as an efficient way to
attract the attention of pedestrians, which can alleviate the
freezing robot problem. In this work, we present a new deep
reinforcement learning (DRL) based social navigation approach
for autonomous robots to move in pedestrian-rich environments
with interaction capacity. Most existing DRL based methods
intend to train a general policy that outputs both navigation
actions, i.e., expected robot’s linear and angular velocities,
and interaction actions, i.e., the beep action, in the context
of reinforcement learning. Different from these methods, we
intend to train the policy via both supervised learning and
reinforcement learning. In specific, we first train an interaction
policy in the context of supervised learning, which provides a
better understanding of the social situation, then we use this
interaction policy to train the navigation policy via multiple
reinforcement learning algorithms. We evaluate our approach
in various simulation environments and compare it to other
methods. The experimental results show that our approach
outperforms others in terms of the success rate. We also deploy
the trained policy on a real-world robot, which shows a nice
performance in crowded environments.

I. INTRODUCTION

Mobile robots have been widely used in various real-world
applications, where the capability of autonomous navigation
is critical. Most of these applications require the robot to
navigate in pedestrian-rich environments, like malls, hotels,
and hospitals. It is challenging for the robot to shuttle freely
in the crowd while following social conventions.

Most existing work for robot navigation focus on collision
avoidance while ignoring human-robot interactions in social
life. Some of them navigate the robot by first analyzing
pedestrians’ behaviors and predicting their trajectories [1]–
[4]. However, it is hard to precisely predicate pedestrians’
trajectories and is like to suffer from the freezing robot
problem in dense crowds. On the other hand, deep rein-
forcement learning (DRL) based methods have been applied
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to collision avoidance with promising results [5]–[9], where
the reward functions need to be specified to describe how
the robot ought to move. Most of them ignore human-
robot interactions, regard pedestrians as moving obstacles,
and plan the avoiding-path over the range of pedestrians’
moving area. However, it would be much more efficient and
safer if the robot were noticed by pedestrians, which brings
new challenges for the robot on when to perform interaction
actions and how to navigate in this human-aware fashion.

Interaction via sounds has been considered as an effi-
cient way to attract the attention of pedestrians. Nishimura
et al. [10] design a DRL framework to learn general policies
that output both navigation actions, i.e., expected robot’s
linear and angular velocities, and interaction actions, i.e.,
the beep action. However, there are several drawbacks for
training these general policies in the context of DRL: 1) It is
difficult to design a specific reward function that encourages
the robot to perform interaction actions properly in various
social environments, like a narrow corridor with moving
pedestrians or a hall full of standing people. 2) Moreover,
the social conventions followed by people are hard to be
specified by reward functions. 3) The general policy for both
navigation actions and interaction actions results in a much
larger policy space to be explored, and the nature of the
sparse reward for navigation requires a long-term memory
to store the succeeding states and actions after an interaction
action during the training.

In this paper, we address these problems by training the
policy via both DRL and supervised learning (SL), as shown
in Fig. 1. In specific, we first train an interaction policy in the
context of SL. Note that, it is easier for humans to label the
situations when an interaction action should be performed
following social conventions, other than specifying such a
reward function. Then a proper interaction policy that is
suitable for the certain social environment can be learned
via SL from the labeled interaction data. Later, we use this
learned interaction policy to train the navigation policy via
DRL. Multiple DRL methods have been applied for robot
navigation with promising results. We can slightly adjust
these methods to train the navigation policy given the learned
interaction policy. We implement our approach based on
multiple DRL algorithms, evaluate the approach in various
simulation environments, and compare it to other methods.
The experimental results show that our approach outperforms
others in terms of the success rate. We also deploy the
trained policy on a real-world robot, which shows a nice
performance in crowded environments.

Our main contributions are summarized as follows:



• We propose a learning approach for social navigation
with interaction capacity in pedestrian-rich environ-
ments. We first train a Supervised Learning Interaction
(SLI) policy, then we use this learned interaction policy
to train the navigation policy via DRL.

• We implement our approach based on multiple DRL
algorithms, which implies that the approach can be used
to incorporate other DRL based navigation methods
with interaction policies.

• We evaluate the approach in various simulation envi-
ronments and compare it to other methods. The ex-
perimental results show that our approach outperforms
others in terms of the success rate. We also deploy the
trained policy on a real-world robot, which shows a nice
performance in crowded environments.

II. RELATED WORK

A. Crowd-avoidance Robot Navigation.

It is challenging for robots to navigate in pedestrian-rich
environments since the prediction trajectories of pedestrians
are hardly to be precise. Prior work address the problem
by introducing various reciprocal methods, like SFM [3],
RVO [1], ERVO [11] and ORCA [2], which have achieved
good results both in both simulation and real-world test-
ing environments. However, these methods rely on certain
assumptions about patterns of human behavior, which can
hardly handle the scenarios with dynamic groups that exhibit
different spatial behavior in pedestrian-rich environments.
Other methods, like Fuzzy control [12], are used to predict
the movement of nearby human [13].

On the other hand, DRL based methods have been applied
to crowd avoidance navigation tasks with promising results.
These DRL methods can generally be divided into two cate-
gories, i.e., value-based methods and policy-based methods.
Value-based methods learn policy based on value function
while policy-based methods based on gradient boost. For
both of them, accurately estimating the state-value function
is vital for the navigation performance, which is highly relied
on the presentation of agents’ observation. For value-based
methods, Chen et al. [6] propose an agent-level method
called SA-CADRL and Chen et al. [8] employ Graph Con-
volutional Networks for a better representation of the crowd
as well. Both of them have made promising achievements in
social navigation tasks. However, they are lack of support for
continuous actions and are not good at searching for stochas-
tic optimal policies [14]. As for policy-based methods, Fan et
al. [15] propose a hybrid-RL policy for multi-agent collision
avoidance without pedestrian information, which also works
in dense crowds. Liu et al. [7] separate pedestrians from
static obstacles based on the angular map. Yao et al. [16] use
both the egocentric sensor map and the pedestrian map as the
real-time observation, which performs well in pedestrian-rich
environments without human-robot interactions.

Imitation learning methods [17] aim to learn a policy
as close to the expert policy as better, which requires the
collection of experts’ demonstrations. Tai et al. [18] applies
GAIL [19] to navigation tasks with raw depth inputs, which

combines the idea of GAN [20] and imitation learning and
performs well in realistic scenarios.

B. Human-Robot Interaction in Robot Navigation.

More and more robots are running in dynamic environ-
ments with humans, it’s important for autonomous robots
to interact with humans following the social conventions.
Kruse et al. [21] summarize that, comfort, naturalness, and
sociability are three key requirements of social navigation.

Prior work usually use model-based methods to simulate
the interaction between robots and crowds. Some early work
regard the crowd as static obstacles [22]–[24], and avoid
collision by establishing a virtual force field. Later, the
Social Force model [25]–[27] is proposed. In this model,
social interactions are simulated by controlling the repulsive
forces of different types (human-to-human, human-to-robot),
where the force parameters usually need to be adjusted sep-
arately, which limits its generalization to many applications.
ORCA [2] propose a method for reciprocal n-body collision
avoidance under the assumption that the protocol used by
each robot is the same. Furthermore, ERVO [11] proposes a
new emotional contagion model on the basis of RVO [1].

In contrast, rather than formulating strategies, learning-
based methods have received widespread attention to guide
the robot to navigate by simulating crowd behavior. Kim
and Pineau [28] use inverse reinforcement learning to learn
a cost function through human demonstrations. In order to
deal with various neighbors, Everett et al. [29] use the LSTM
model and process each neighbor in the reverse order of
the distances from the robot. However, this model cannot
fully represent all the interactions between the crowd and the
robot. SARL [30] designs a social attentive pooling module
to encode crowd cooperative behaviors, where the human-
robot and human-human interaction are jointly modeled,
which makes up for the deficiencies in [29]. However, all
of the above methods may fall into stuck or time out when
the crowd is dense. To address the freezing robot problem,
Dugas et al. [31] propose a multi-model socially naviga-
tion behaviors which allows robots to speak and nudge.
Nishimura et al. [10] design the safety-efficiency trade-off
reward based on Sequential Social Dilemmas (SSD) [32].
Both of them propose that instead of getting into the freezing
robot problem, it is better to encourage robots to interact with
pedestrians appropriately.

Following above ideas, we address the social navigation
problem with interaction capacity by training the policy via
both DRL and SL.

III. APPROACH

It is neither safe nor efficient for a robot to take the
initiative to avoid collisions with every pedestrian in a
pedestrian-rich environment. On the other hand, with inter-
action capacity, the robot can interact with humans when it
were going to be stuck, which can alleviate the freezing robot
problem and improve efficiency.

In this section, we propose a new learning approach for
social navigation with interaction capacity. We first train an



interaction policy via SL, then we use this learned interaction
policy to train the navigation policy via DRL. As shown in
Fig. 1, the navigation policy network is composed of two
modules, i.e.,

• planning module, serves as a collision avoidance com-
ponent in a typical path planning system for a mobile
robot, which observes the environment via its sur-
rounding sensor and pedestrian information and outputs
expected linear and angular velocities to navigate the
robot,

• interaction module, specifies an interaction policy for
robot to decide when to interact with humans, i.e., beep
or speak, given its surrounding pedestrian information
and its next control commands.

Fig. 1. The architecture of the crowd navigation policy network.

A. Planning Module.

The input for the planning module is composed of three
parts, i.e., the sensor information, the pedestrian information,
and the relative goal for the robot. In particular, the sensor
information is specified by an egocentric local grid map of
the robot, which represents the environmental information
around the robot, including its shape and observable ap-
pearances of obstacles. The local grid map is constructed
from a costmap that is generated by outputs of a 2D laser.
The pedestrian information consists of three channels of
pedestrian maps, which indicate the location and speed of
pedestrians around the robot. The relative goal specifies the
target position and orientation of the robot.

In this paper, we implement the approach on a differ-
ential drive robot that follows desired speed commands.
Then the output for the planning module consists of a
linear velocity v and an angular velocity ω . We implement
both discrete and continuous actions for using multiple
DRL methods. In specific, for discrete actions, we set a
linear velocity v ∈ {0.0, 1.0} and an angular velocity ω ∈
{−0.8,−0.4, 0.0, 0.4, 0.8}. For continuous actions, we set
v∈ [0, 0.6] and ω ∈ [−0.9, 0.9]. Both discrete and continuous
actions can be directly performed by the differential robot in
our experiments. Note that, v ≥ 0, i.e., moving backward
is not allowed, due to the lack of rear sensors. As shown
in Fig. 1, for discrete actions, the network outputs a 10-
dimensional vector from a softmax layer to choose the pair

of linear and angular velocities. For continuous actions, the
network outputs the mean of linear (resp. angular) velocity
sampled from a Gaussian distribution.

Notice that, the learned interaction policy does not directly
change the inputs of the planning module. It affects the
training of the planning module by affecting behaviors of sur-
rounding pedestrians in the training simulation environments
for the planning module in the context of DRL. Then we can
only ask the navigation policy to minimize the arriving time
of the robot without collision. When the policy-based DRL
algorithm, i.e., PPO [33], is applied in the planning module,
we follow the reward specified in [16].

The network for the planning module would be trained
in our customized simulator1. In our experiments, both the
valued-based DRL algorithm, i.e., V-learning [5], and the
policy-based DRL algorithm, i.e., PPO, would be imple-
mented and evaluated in the simulator for the discrete and
continuous actions, respectively.

B. Interaction Module.

When to beep or alarm is vital for the interaction policy
in social robot navigation, which requires the robot to better
understanding the social situation. A easy policy P1

beep is to
perform the beep action Abeep, when dmin (the distance from
the robot to the nearest pedestrian) is smaller than a fixed
distance dθ , i.e.,

P1
beep =

{
Abeep, if dmin < dθ ,

Do nothing, otherwise.
(1)

We can construct an improved policy P2
beep by further

considering the speed and orientation of pedestrians, i.e.,

P2
beep =


Abeep if ∀p. ||Pp||< dθ ∧||Vp||> vθ

∧ Pp ·Vp > 0,
Do nothing, otherwise.

(2)
Where Pp is the relative position between the robot and the
pedestrian p, Vp denotes the velocity of the pedestrian, and
vθ is the velocity threshold of the pedestrian.

Above simple interaction policies require predefined fixed
thresholds, which may cause unnatural behaviors and are
not robust for various dense environments. Nishimura and
Yonetani introduce L2B [10] that designs a delicate reward
function to let the robot learn to beep in the context of DRL.

To better understand the social situation, we propose to
learn the interaction policy from the interaction data labeled
by human, where the social conventions could be implicitly
learned via SL. Moreover, the interaction policy should not
only perform the beep action when it has already got stuck,
but also try its best to prevent the robot from freezing. In
this sense, the next control command of the robot, i.e., the
expected linear and angular velocities, needs to be considered
as an input of the network for the interaction policy and
should be considered when the data labeling as well.

1https://github.com/DRL-Navigation/img_env.

https://github.com/DRL-Navigation/img_env


As shown in Fig. 1, after training the network by the
labeled interaction data, we can integrate the learned inter-
action policy to the network for the navigation policy and
train the integrated navigation policy in the context of DRL.
Notice that, in the training process of DRL, the robot is able
to observe multiple steps of following states after the beep
action. Then the integrated navigation policy would be able
to learn to cooperate with the interaction policy to prevent
it from freezing. We will evaluate such performances in the
experiments.

As shown in Fig. 1, the convolutional neural network for
binary classification is used in the interaction module for SL.
The network consists of three convolutional layers to extract
features hidden in the pedestrian map. Then, the refined
features are merged with the robot’s control command from
the planning module and passed to a fully-connected layer,
which outputs a 2-dimensional vector from a softmax layer
to choose whether beep or not.

C. Simulation Environments.

We train both the planning module and the interaction
module in simulation environments generated by a cus-
tomized 2D simulator based on OpenCV. Following the
discussion in [9], [16], training the navigation policy in two
kinds of scenarios, i.e., random and circular scenarios as
shown in Fig. 2, can lead to a robust policy that not only
performs well in various simulation environments but also in
the real world.

In this paper, we train both the planning and interaction
policies in these two scenarios. In particular, a random
scenario contains one robot, eight pedestrians, and four static
obstacles, where their initial positions and ending positions
(for the robot and pedestrians) would be placed randomly.
Meanwhile, a circular scenario contains one robot and eight
pedestrians, where all of them would be placed randomly in
a circle with a random radius.

Following L2B2, all pedestrians in our simulator are driven
by Emotional Reciprocal Velocity Obstacles (ERVO) [11], an
emotional version of RVO which allows pedestrians to react
with the beep sound naturally, where pedestrians’ max speed
is set to be 1 m/s.

IV. EXPERIMENTS

In this section, we evaluate our approach for social naviga-
tion with interaction capacity in both the simulation and the
real world. We first specify details of our implementation on
both the planning module and the interaction module. Then
we compare our approach with others, including the ones
with simple interaction policies P1

beep and P2
beep, and L2B. We

demonstrate the robustness of the approach by implementing
it on different DRL algorithms. We also deploy the trained
model to a differential drive robot and test its navigation
performance in the real world. Both qualitative and quanti-
tative experiments show that our approach performs well in
pedestrian-rich environments.

2https://github.com/denkiwakame/Python-ERVO.

(a) Random scenario (b) Circular scenario

Fig. 2. Two scenarios for the training, where the small black circle and light
blue spots behind it denote the running robot and its trajectories, green spots
denote the legs’ trajectories of pedestrians, other black boxes and circles
denote static obstacles, and the blue circle line around the robot denotes the
warning zone for the beep action w.r.t. nearby pedestrians.

TABLE I
PARAMETERS FOR SL AND DRL

SL hyper-parameters Value DRL hyper-parameters Value

dataset size 10000 learning rate for policy 5×10−5

batch size 1024 learning rate for value 1×10−3

image size 48×48 discount factor (γ) 0.99
pedestrian radius 0.3 replay buffer size 2048

learning rate of Adam 1×10−4 image size 48×48
training epoch 10000 maximum episode length 200

A. Supervised Learning and Reinforcement Learning Setup.

We start with the training of the interaction module via
SL. The labeled training data contains 10,000 pairs of (x,y),
where x is a triple ⟨MP,v,ω⟩, MP denotes the pedestrian
information which is specified by three channels of the
grayscale images to represent the location and speed of
pedestrians around the robot, v and ω denote the linear and
angular velocities of the robot, and y is the label for whether
beep or not. These training data are collected from various
simulation environments in the two scenarios, i.e., random
scenario and circular scenario. We label these data manually.
For DRL, we use PPO as the policy-based method, and V-
learning as the value-based method, the parameters of V-
learning are all the same as in SARL3. Parameters for SL
and PPO are listed in Table I.

In our experiments, both SL and DRL are trained in an
i9-9900k CPU and an NVIDIA Titan RTX GPU.

B. Experiments on Simulation Environments.

1) Comparison with simple interaction policies: We com-
pare the performance of our approach, i.e., SLI, with the ones
that replacing the learning interaction policy by simple poli-
cies P1

beep and P2
beep respectively, i.e., FD(dθ ) and FDV(dθ ,

vθ ), where FD(dθ ) denotes the social navigation policy that
the robot would beep when a pedestrian gets close to a
distance less than dθ as defined in Eq. (1), and FDV(dθ , vθ )
considers both the distance dθ and the velocity vθ . Note that,
the velocity threshold only considers pedestrians who move
towards the robot as specified in Eq. (2). We set dθ = 1.0m
as the distance threshold and choose vθ ∈ {0.3, 0.5, 0.7}m/s

3https://github.com/vita-epfl/CrowdNav.

https://github.com/denkiwakame/Python-ERVO
https://github.com/vita-epfl/CrowdNav


as possible velocity thresholds. In addition, we use Base
to denote the baseline approach that omits the interaction
module in SLI. Here we apply PPO in the planning module
for the above methods, which outputs continuous actions of
the robot.

Table II shows the average results of these methods in
500 testing environments of each scenario, where ‘Success’
denotes the ratio of arriving at the goal safely, ‘PedColl’
denotes the ratio of collisions with pedestrians, and ‘Beep’
denotes the ratio of beep times in all steps.

TABLE II
PERFORMANCE OF DIFFERENT INTERACTION METHODS

scenarios Methods Success PedColl Beep

Random

Base 0.668 0.330 -
FD(1.0) 0.956 0.010 0.624
FDV(1.0, 0.3) 0.912 0.056 0.120
FDV(1.0, 0.5) 0.866 0.100 0.077
FDV(1.0, 0.7) 0.804 0.138 0.034
SLI 0.884 0.062 0.097

Circular

Base 0.558 0.442 -
FD(1.0) 0.778 0.222 0.823
FDV(1.0, 0.3) 0.830 0.170 0.256
FDV(1.0, 0.5) 0.732 0.268 0.254
FDV(1.0, 0.7) 0.766 0.222 0.179
SLI 0.864 0.136 0.158

Table II shows interaction policies can greatly improve
the performance of robot navigation in both random and
circular scenarios. Moreover, our approach, SLI, performs
well in environments with high-frequent interactions, like
environments in the circular scenario. Note that, SLI leads
to a much lower beep rate than the fixed-threshold methods,
i.e., FD and FDV, while keeping a high success rate. Fig.
3 demonstrates the differences of the beep policy between
FDV(1.0, 0.5) and SLI. When the robot is surrendered by a
crowd, FDV beeps frequently by the fixed-threshold policy
P2

beep, while SLI achieves the similar performance with only
few beeps.

For environments in the random scenario, SLI still leads
to an acceptable performance compared with others. Mean-
while, proper values of dθ and vθ need to be manually
adjusted to achieve better performance. These experimental
results show that a proper interaction policy can greatly
improve the performance of robot navigation in pedestrian-
rich environments with very few interactions.

2) Comparison with L2B-SARL: Nishimura and Yonetani
introduce L2B that designs a delicate reward function to let
the robot learn to beep in the context of DRL. They propose
L2B-SARL as a combination of L2B and SARL, i.e., a self-
attention mechanism.

We implement L2B-SARL and train it on our simulator.
For a fair comparison, we also implement V-SLI, which is
extended from L2B-SARL by replacing the policy for the
beep action with the interaction policy trained by SL in our
approach. Note that, both approaches output discrete actions
of the robot.

(a) FDV(1.0,0.5) (b) PPO-SLI

(c) L2B-SARL (d) V-SLI

Fig. 3. The illustration of trajectories generated by various social navigation
approaches in the circular scenario with one robot and eight pedestrians. The
gradient blue spots denote the trajectory of the running robot, the blue circle
around the robot denotes the beep action, and lines with other colors denote
different pedestrians, where stars denote their target points.

For a fair comparison, we remove static obstacles in
environments of the random scenario here, as L2B-SARL
does not support static obstacles. In the experiments, the
network parameters were pre-trained via imitation learning,
i.e., 6k episodes by ORCA firstly, which due to the fact that
the reward function of L2B does not encourage the robot to
move towards the goal.

Both quantitative and qualitative results are presented in
the following, which show a clear superiority of our method.

Table III lists the numerical results of the comparison
experiments under different pedestrian numbers N in 500
testing environments of each scenario. The results show that
V-SLI performs better than L2B-SARL in all tests in the
sense of success rate and collision rate, while it leads to
a slightly higher frequency of the beep action. With the
increase of the number of pedestrians, the performance of
L2B-SARL decreases rapidly, while V-SLI still performs
well. Moreover, due to the existence of saddle points in state
space about the value function, L2B-SARL has a higher stuck
rate than ours, since their action space is twice as large as
ours.

Fig. 3 illustrates the difference of interaction policies
between L2B-SARL and V-SLI. At the beginning of the
trajectory, there is a pedestrian near the robot, L2B-SARL
chooses to change the robot’s direction to avoid the collision,
which leads the robot to take a big turn and meet more
pedestrians. Meanwhile, V-SLI predicts the collision and
decides to beep at once, then efficiently moves straight
forward to the goal.



TABLE III
PERFORMANCE OF L2B-SARL AND V-SLI

scenarios Methods N Success PedColl Beep

Random

L2B-SARL 4 0.824 0.168 0.052
V-SLI 4 0.920 0.080 0.065
L2B-SARL 6 0.686 0.198 0.046
V-SLI 6 0.882 0.108 0.098
L2B-SARL 8 0.508 0.198 0.048
V-SLI 8 0.770 0.144 0.094
L2B-SARL 10 0.678 0.286 0.051
V-SLI 10 0.840 0.100 0.106

Circular

L2B-SARL 4 0.694 0.296 0.044
V-SLI 4 0.808 0.190 0.081
L2B-SARL 6 0.546 0.442 0.047
V-SLI 6 0.656 0.342 0.109
L2B-SARL 8 0.520 0.270 0.047
V-SLI 8 0.612 0.378 0.179
L2B-SARL 10 0.514 0.278 0.046
V-SLI 10 0.562 0.360 0.103

Fig. 4. Success rate of PPO-SLI, V-SLI and ORCA-SLI with respect to their
baselines. The average results are tested in 1000 episodes which consisted
of 500 environments of the random scenario and 500 environments of the
circle scenario, with 10 pedestrians.

3) Generalizable experiments: We implement the SL in-
teraction module on both the value-based method, i.e., V-
learning and the policy-based method, i.e., PPO, and we
also implement the SL interaction module on a conventional
model-based method, i.e., ORCA. The performance of these
approaches, i.e., success rate, is shown in Fig. 4, where
the baselines denote the original methods without the SL
interaction module.

Fig. 4 shows that the SL interaction module can be
easily adapted to multiple navigation methods and improve
their performance. The common promotion for baselines
with interaction module demonstrates that our approach is
generalizable and advantageous.

C. Experiments on the Real Robot.

As shown in Fig. 5, we use Kobuki base TurtleBot 2 as the
real-world robot, which is equipped with a Hokuyo UTM-
30LX Scanning Laser Rangefinder as the 2D laser sensor,
a RealSense D455 depth camera as the pedestrian detection
and tracking sensor, as well as a Meeteasy Mvoice 1000 as
the audio output. In addition, we choose ThinkPad P15v as

Fig. 5. The robot in our experiments, where the 3-channel pedestrian map
is generated from the depth camera, the sensor map is from the laser sensor,
the laptop is for inferring the deep neural network (left). A pedestrian-rich
environment (right) and the beeping robot (bottom-right) are illustrated.

Fig. 6. The illustration of the real-world robot, which tracks persons
through combining yolo and spencer people tracking (left). The trajectory
of the robot (blue cycle) in a crowded environment (right) is illustrated,
where the red circle denotes it’s beep action.

the computation device (Intel core i7-11800H CPU, 8cores,
16threads, 4.6GHZ, Nvidia-T600 4GB GPU, 2.1kg), which
allows the real robot to run the control model at 63 HZ. We
deploy the trained policy by PPO-SLI to the robot since it
outperforms others including V-SLI. We use yolo-V3 [34] to
detect pedestrians and spencer people tracking [35] to track
pedestrians, as shown in Fig. 6.

We test our method in a crowded corridor environment, as
shown in Fig. 5, the robot is carrying out a navigation task
while pedestrians walking in the vicinity. Note that, some
humans may ignore the robot, i.e., is using the mobile phone,
which increases the difficulty of navigation task. Fig. 6
illustrates the trajectory of the robot in the environment,
which demonstrates that our approach allows the robot reach
the goal efficiently and beep in a proper way while people are
about to surround it. Furthermore, when obscured by pedes-
trians, proper interactions to remind pedestrians to move
away are beneficial for the robot to restore its localization.

V. CONCLUSION

We propose a learning approach for robot social navigation
with interaction capacity in pedestrian-rich environments,
where the interaction policy, SLI, is first trained via SL,
then it incorporates with a DRL based navigation method
to generate the social navigation policy. We evaluate the
approach on both simulation environments and a real-world
robot. Both quantitative and qualitative experimental results
show that, the SLI policy can be easily adapted to multiple
navigation methods and improve their performance, which
allows the robot to navigate through crowds efficiently.
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