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Abstract— Self-play has been shown to be effective to provide
a proper training curriculum for a reinforcement learning
agent in competitive multi-agent environments without direct
supervision. However, its performance is still unstable for
problems with sparse rewards, e.g., the scoring task with
goalkeeper for robots in RoboCup soccer. It is challenging to
solve these tasks in reinforcement learning, especially for those
that require combining high-level actions with flexible control.
To address these challenges, we introduce a distributed self-play
training framework for an extended proximal policy optimiza-
tion (PPO) algorithm that learns to act in parameterized action
space and plays against a group of opponents, i.e., a league.
Experiments on the domain of simulated RoboCup soccer show
that, the approach is effective and learns more robust policies
against various opponents compared to existing reinforcement
learning methods. A demonstration video is available online at
https://youtu.be/Bul._lilvND4.

Index Terms—reinforcement learning, parameterized action
space, distributed, self-play, multi-agents

I. INTRODUCTION

It is challenging for deep reinforcement learning (DRL)
algorithms to solve competitive multi-agent tasks with sparse
rewards and parameterized actions, e.g., the scoring task with
goalkeeper for robots in RoboCup soccer [1], a.k.a. Half
Field Offense (HFO) [2], as shown in Fig. 8. In particular, the
offense agents attempt to score against the defense agents.
Their parameterized actions are composed of discrete high-
level actions, like ‘dribbling’ and ‘running’, with continuous
action-parameters, like the corresponding coordinates and
directions, for flexible control. In this paper, we introduce
a distributed self-play training framework for an extended
proximal policy optimization (PPO) algorithm to address
these problems.

Self-play allows DRL to learn by playing against itself
without requiring any direct supervision, which has been ap-
plied in many competitive multi-agent tasks with proposing
results, such as playing the game of Go [3], Dota 2 [4],
and StarCraft II [5], [6]. However, its performance is still
unstable for problems with sparse rewards.

There are multiple self-play training paradigms. Fictitious
play (FP) [7] generates fictitious players to repeatedly make
the best response based on the opponent’s average strategy,
where the player’s average strategy will converge to a
Nash equilibrium. Fictitious self-play (FSP) [8] introduces
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a sample-based machine learning method, which learns an
approximation of the best response through reinforcement
learning and updates the average strategy through sample-
based supervised learning. Neural network virtual self game
(NFSP) [9], combining FSP and the neural network function
approximation, uses DQN [10] to learn an approximation of
Nash equilibrium in an incomplete game without any prior
knowledge. Later, asymmetric self-play (ASP) [11] enables
one of the two sides of a zero-sum game to set up problems
for the other and improves the solution of one’s agent.
Recently, league self-play (LSP) [12] points out that it is
challenging to discover novel strategies by using simple self-
game exploration methods, while the alliance is composed
of multiple agents iteratively trains the agents to defeat
the others. LSP adjusts the mixed probability proportionally
according to the winning rate of each opponent to the agent.
In this paper, we follow the idea of LSP and train the policy
by playing against a group of opponents, i.e., a league.

On the other hand, DRL in parameterized action space
has attracted widespread attention [13]. A simple method
to handle parameterized actions is to only consider the
discretization of the continuous action-parameters, which
sacrifices its performance. Another way is to extend the
discrete-continuous action space into a continuous set [14],
which would increase the difficulty of solving problems.
Recently, parameterized deep Q network (P-DQN) [15] and
multi-channel deep Q network (MP-DQN) [16] are proposed
to directly learn policies based on parameterized actions.
Later, they are extended to a multi-agent setting, called
multi-agent hybrid Q network (MAHHQN) [17], and trained
in a distribute paradigm with parallel curriculum experi-
ence replay [18]. Moreover, a novel multi-agent hierarchical
policy gradient algorithm (MAHPG) [19] is proposed for
parameterized actions, which is capable of learning various
strategies and transcending expert cognition by adversarial
self-play learning. However, MAHPG is evaluated in an
air combat simulation environment, where two competitive
agents end up with the same trained policy. It would be more
challenging, if two competitive agents end up with different
policies in the self-play setting, like the scoring policy for
the offense agent and the defense policy for the goalkeeper
in the scoring task of RoboCup soccer.

Notice that, a Q-value based method only satisfies the self-
consistent equation by training the Q value, thereby indirectly
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optimizes the agent’s performance. Meanwhile, a strategy
optimization method can directly optimize the desired policy.
Proximal policy optimization (PPO) [20] is such a pop-
ular policy gradient algorithm. Recently, hybrid proximal
policy optimization (H-PPO) [21] extends PPO to handle
parameterized actions. In specific, it applies PPO for the
discrete policy and the continuous policy, and updates both
policies by minimizing their clipped surrogate objectives,
respectively. However, there is no direct relation between the
discrete policy network and the continuous policy network.
Then the discrete policy has to choose the high-level action
only based on the state information without considering
the corresponding parameters returned by the continuous
policy. In this paper, we introduce another extension of PPO
and propose a new hybrid actor-critic DRL framework in
parameterized action space. In specific, we consider both
the output of the continuous policy network and the state
information as the input of the discrete policy network, which
can help the discrete policy to learn a more accurate response
to the state.

Meanwhile, distributed training architectures, that separate
learning from acting and collect experiences from multiple
actors running in parallel on separate environment instances,
have become an important tool for DRL algorithms to
improve the performance and reduce the training time [22],
[23], [24], [25], [26], [27]. In this paper, we implement our
extended PPO algorithm and the self-play paradigm in a
distributed training framework.

We evaluate our approach in the HFO 1vl task, i.e.,
the scoring task with an offense agent and a goalkeeper.
Our approach learns both an offense policy and a defense
policy in the self-play setting. We respectively evaluate
their performance for the offense agent and the goalkeeper
with multiple different policies. We compare our offense
policy with Helios [28], a manually programed policy, and
other trained policies by other DRL methods, like DQN, P-
DQN, and MP-DQN. The experimental results show that our
approach is effective and learns more robust policies against
various opponents compared to other DRL methods.

Our main contributions are summarized as follows.

o We extend PPO and propose a new hybrid actor-critic
DRL framework in parameterized action space.

o We introduce a distributed self-play training framework
for the extended PPO that trains the policy by playing
against a league and separates learning from acting.

o We implement a distributed DRL algorithm with self-
play for the HFO 1v1 task.

— Experiments show that the algorithm is effective
and learns more robust policies compared to other
DRL algorithms.

— To the best of our knowledge, this algorithm is
the first algorithm that succeeds in applying the
self-play training paradigm in discrete-continuous
(parameterized) hybrid action space for two com-
petitive agents with different policies.

II. APPROACH

We first introduce the definition of parameterized action
Markov decision process (PAMDP) and the corresponding
extension of PPO. Then we propose the distributed archi-
tecture that uses Redis database to collect replay fragments
for distributed training. We also specify the league self-play
training paradigm. At last, we provide the entire distributed
self-play training framework for the extended PPO algorithm
in parameterized action space.

A. Parameterized Action MPDs

The parameterized action space [13] consists of a discrete
action set and its corresponding parameter set, defined as
follows. Each parameterized action is a pair (k,xy), where
a discrete high-level action k& € Ay, a continuous action-
parameter 5, € Xy, the discrete action set Ay = {1,..., K},
and for each k, the value of its action-parameters are in the
domain X and X; C R™* for its dimension my. Then the
action space is specified as follows:

A= U {(k,l‘k)|xk€Xk}

keAy

A parameterized action Markov decision process
(PAMDP) [13] is defined as a tuple (S, A, P, R, ~y), where
S is the set of all states, A is the parameterized action
space, P(s' | s, k,x) is the Markov state transition
probability function, R(s, k, xy, ') is the reward function,
and v € [0, 1) is the reward discount coefficient of the
reward function. The policy 7 : S x A — [0, 1] aims to
maximize the expected discounted rate of return.

B. Parameterized Proximal Policy Optimization

We first specify two policies mp, (Z: | s¢) and mp, (Kt |
st, &) for the vector of continuous action-parameters z; and
the discrete high-level action k;, respectively. In particular,
7, (Fy | s¢) maps a state to a vector of action-parameters
for every high-level actions, i.e., Z; = (z1,...,2k) and

ng(ft|st): S*)(X1,...,XK).

mo, (Kt | S¢, @¢) is a mapping from the state space and vectors
of action-parameters to a distribution over discrete high-level
actions, i.e.,

Wga(ktlst,ft): S x (Xl,.,,,XK) ><Ad4> [0, 1].

As shown in Fig. 1, we propose a new hybrid actor-critic
DRL framework in parameterized action space here. Differ-
ent from the framework in H-PPO, we consider both the
result ¥; of mp_ and the state s, as the input of discrete
policy network 7g_, which can help the discrete policy to

learn a more accurate response to the state.

We extend PPO to maximize the expected value of g,
and 7y, using the policy gradient method. We use stochastic
gradient ascent to maximize the expected return J(mp,) and
J(mg,), respectively. In specific,

VQJ(TFQI) =
T
[ ZVG lOgﬂ'gw (ft ‘ si)Aﬂem’ﬂea(sﬁkhft) 5

TNTY, T, pa

Oy yy = Oz, + Vo J(mo,),
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Fig. 1. Hybrid actor-critic DRL framework.

VeJ(ﬂea) =
T
B Zvelogﬂea (Kt | se, @) AT ™00 (54, ke, ) |

TNT02 00 | 52

0“k+1 = 0q,, + ﬂVQJ(Wga),

where «, [ are corresponding learning rates and
ATz ™0a (g, ky, &) denotes the advantage function estimator

defined below.

Note that, A™%='"6a is an estimator of the advantage
function for both policy networks. We apply the multi-step
optimization that uses the same trajectory 7 for both J(mp, )
and J(mp,). PPO imports importance sampling and the clip
method to avoid disruptive and large-scale updates of the
policy. Then we define

0 :argrréaxIE[Lw(st,kt,fh@wk,@w)}7 (1

Tr41
Lz(st,kt,ft,ﬁzk,ﬁz) =

min ( — (x—t» | 5e). AT M0 (54, ke, Tr),
o, (@ [ 50)

g(€7 Aﬂ-gmk ek (Sta kta ft)))?

Oayy, = argmaxE[La(se, ke, Tt 0ay, 0a)], (2)

La(5t7kt7ft,0ak,9a) =

min (MAWW Tak (sy, ki, E),
T4, (Kt | st)

g(e, A0z, "0y, (Sh kt, ft))),

where a A A0
_ +e€)A, >0,
gle,4) = {(1 —)A, A<0

and e is a hyper-parameter that limits the update rate.

We use another network to fit the state value estimation
function Vi (s). Then we construct the variance reduction
advantage function estimator as follows:

AT 00 (54, ky, By ) = 0p 4 (YA)Oe1, 3)

where 0; = 7, + YV (si+1) — Vip(s¢) and the discount factor
0<~y<1,0< A<

C. Distributed Experience Replay

We introduce the distributed training architecture and the
specific implementation of experience replay here. As shown
in Fig. 2, the architecture is composed of multiple actor
nodes, a learner node, and the shared replay buffer. In
particular, multiple actor nodes run in parallel to generate
experiences, which would be collected in the shared replay

buffer. Then, the learner node learns from the experiences
in the buffer and regularly updates the parameters of the
networks.

In our implementation, two competitive agents need to
be trained in the distributed architecture simultaneously. In
particular, there is a training process for each agent, i.e., the
offense agent and the defense agent. The training process
contains two threads. The first thread collects experiences
from each actor node and stores them in the Redis database.
The second thread trains the network with the experiences
extracted from the Redis database and updates corresponding
parameters.

In each episode, the system starts a scoring game between
the offense agent and the defense agent, which are driven
by the current offense policy network and the defense policy
network, respectively. The system also collects correspond-
ing experiences into the buffer during the game. The game
will end after a score is made, the ball goes out of bounds,
or the goalkeeper catches the ball. With the help of the
Redis database, we can implement the distributed training
architecture on multiple computers using a Gigabit switch in
a local area network (LAN).

(state, reward, done)

—

env

multiple
actor

nodes act

(s,a, 1,5, done)
game resulty

management node for self-play|

calculate winning percent
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Fig. 2. The distributed self-play training framework for SDP-PPO.

D. League Self-Play

We intend to learn a robust offense policy from a proper
training curriculum provided by self-play. During the training
process, both the offense policy and the defense policy would
be continuously improved. However, due to the catastrophic
forgetting phenomenon of neural networks, the offense policy
network would “forget” how to defeat early versions of the
defense policy. Then we train the offense policy by playing
against a group of historical versions of the defense policy,
i.e., the league.

In our implementation, we first start multiple scoring
games between the offense policy and every version ¢ of
the defense policy in the league. Then we calculate the
winning rate p; of the offense policy for each version <.
We define f; = p; x (1 — p;) and choose the version ¢ with
the maximum value of f; as the opponent to compete with
the offense policy in a certain number of scoring games to
generate corresponding experiences. Note that, f; achieves
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its maximum value if p; = 0.5. In our experiments, we
find out that the offense policy can be greatly improved by
learning from the experiences generated by competing with
the defense policy whose p; is close to 0.5. We also clear
the memory and recalculate the winning rate p; after certain
steps of the training, as the early winning history may not
be proper for the updated offense policy.

E. SDP-PPO Algorithm

Now we introduce the distributed DRL algorithm SDP-
PPO with self-play in parameterized action space. Algo-
rithm 1 specifies the algorithm for an actor node. Algorithm 2
specifies the algorithm for the learner node of the offense
agent. Algorithm 3 specifies the algorithm for the learner
model of the defense agent. Note that, it also stores multiple
versions of the defense policy to maintain the league. Algo-
rithm 4 specifies the algorithm for the management node for
self-play, which selects proper versions of the the defense
policy and construct corresponding scoring games.

Algorithm 1 Actor node
1: Initialize SDP-PPO with the experience buffer D
2: for episode =1,2,..., N do

3: (7o, ,mp, ) < REDISCLUSTER.GetLearnerParameters();
4 reset env

5 for step k=1,2,..., K do

6: .ft =T, (ff | St)

7 ay is the result of 7y, (ay | s¢, Zt)

8 (’I"t78t+1,dt) = env(at,ft)

9: (8t,71, at, Ty, dy) — D

10 if d; then

11: REDISCLUSTER.Rpush(D)

12: REDISCLUSTER.Rpush(env.game _resulf)
13: clear D

14: break

15: end if

16: end for

17: end for

III. EXPERIMENTS

We first evaluate our SDP-PPO on the Platform do-
main [13], which is based on a simulation environment as
shown in Fig. 3 with an agent that has three high-level
actions, i.e., run, hop, and leap, and each with a continuous
action-parameter to control horizontal displacement. The
Platform domain has been widely applied to evaluate the
performance of DRL algorithms in parameterized action
space. Fig. 4 shows the learning curves of SDP-PPO and
other DRL algorithms. In particular, we use P-PPO to denote
the ablation version of SDP-PPO without the distributed
training. Note that, self-play is not used here. We use DQN
to denote our implementation of the DQN algorithm [10]
by discretizing the continuous parameters. We use P-DQN
and MP-DQN to denote our implementations of the P-DQN
algorithm [15] and the MP-DQN algorithm [16], respectively.
Fig. 4 shows that both SDP-PPO and P-PPO outperform

Algorithm 2 Offense learner node

1: Randomly initialize both policy networks g, mg,
the value network V3

2: Initialize SDP-PPO with the experience buffer D
3: REDISCLUSTER.Set(mg_, 7g,)
4: for epoche =1,2,..., F do
5: while length of D | epoch do
6: D.append(REDISCLUSTER.Lrange(D;))
7: REDISCLUSTER.Lpop(D;)
8: end while
9: compute A™%=>"% by Equation (3)
10: Ry =1+ Vg, (St41)
11: update 6, by Equation (1)
12: update 6, by Equation (2)
13: update ¢ by
1 = argmin \%| > (Va(s)) = Ry)?
steD
14: clear D
15: REDISCLUSTER.Set(mg_, mg,)
16: end for

and

Algorithm 3 Defense learner node

1: defense_id=REDISCLUSTER.Get(defense_id)

2: Randomly initialize both policy networks 7y, 7g,
the value network Vy

3: Initialize SDP-PPO with the experience buffer D

4: REDISCLUSTER.Set(mg_,mg, )

5. for epoche =1,2,...,FE do

6: while length of D | epoch do

7 D; = REDISCLUSTER.Lrange(D;)

8 REDISCLUSTER.Lpop(D;)

9: id = REDISCLUSTER.Get(defense_id)

10: if defense_id = id then

11: D.append(D;)

12: end if

13: if REDISCLUSTER.Get(new defense_id) then

defense_id _defense_id

14: save file Ty, » o,

15: defense_id = new defense_id

16: REDISCLUSTER.Del(new defense_id)

17: end if

18: REDISCLUSTER.Set(mj?, mj?)

19: end while

20: compute A™%=>"% by Equation (3)
21: Rt =71+ Vd)k (St+1)

22: update 6, by Equation (1)

23: update 6, by Equation (2)

24: update ¢ by

1
Pr+1 = argmin — Z (Vo (51) — Re)?

D

¢ ‘ | steD
25: clear D

26: REDISCLUSTER.Set(mg,,, 7g,)
27: end for

and
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Algorithm 4 Management node for League self-play

Require: Ncpoose: the maximum number of unmatched
games for the training model; Nggsgr: the number of
games when to reset the record; Prgser: the winning
probability when to reset the record; Neapy: the number
of games when the winning rate is not calculated

1: defense_id = 0

2: max_id =0

3: Initialize the buffer result of game results

4: while True do

5: result jofense i« = REDISCLUSTER Lrange(game_result)
6: REDISCLUSTER.Lpop(game_result)

7: if notchosen > Ncpoose then

8: clear result,qy ia

9: end if

10: for id =0,1,2,...,max_id do

11 if resultygxia-sum > NReser, Dmaxia > Preser

then

12: max_id = max_id + 1

13: REDISCLUSTER.Set(new defense_id, max_id)
14: end if

15: if result,y.sum > Nggser, Did > Preser then
16: clear result;;

17: end if

18: if result;y.sum < Ncapy then

19: pia = 0.5
20: else
21: Calculate the winning rate p;; of resulty
22: end if
23: fia = pia X (1 = pia)
24: end for
25: REDISCLUSTER.Set(defense_id, softmax(f))
26: if softmax(f) = max_id then
27: notchosen = 0
28: else

29: notchosen = notchosen + 1

30: end if

31: end while

others, and the distributed training paradigm can improve
the performance of SDP-PPO.
In the rest of the section, we evaluate SDP-PPO on HFO.

A. Half Field Offense (HFO) Domain

As shown in Fig. 5, Half Field offense (HFO) [2] specifies
the scoring task with goalkeeper for robots in RoboCup
soccer. In particular, an offense agent is specified by a state
with 9 elements, i.e., ego position (z,,¥,), Whether it is
holding the ball h, ball’s position (zp,yp), goal’s position
(4,Yy), and defense agent’s position (z4,yq). An offense
agent has 4 high-level actions, i.e., interception, shooting,
dribbling backwards, and dribbling. The dribbling action has
two continuous parameters, i.e., the court coordinate (x,y).
A defense agent is specified by a state with 7 elements, i.e.,
ego position (x4, y4), ball’s position (z, yp), offense agent’s
position (z,,y,), and the speed of the ball v. As illustrated

in Fig. 5, a defense agent also has 4 high-level actions, i.e.,
intercepting (in the large penalty area), running to the small
penalty area defense point, running to the shooting defense
point, and running in the small penalty area. There are two
continuous parameters for the last action, i.e., the coordinate
(z,y) in the small penalty area.

— DQN
/// P-DQN
—— MP-DON
P-PPO
SDP-PPO
i £ 5 @ %
o

Fig. 3. Platform domain. Fig. 4. Learning curves on Platform.

10 — DON
— P-DQN

MP-DQN

s —— SDP-PPO

Mean Episode Reward

135 150 175

75 100
Training Time (Minute)

Fig. 5. HFO do- Fig. 6. Learning curves on HFO.
main.
B. DRL Setup

We trained our offense agent and defense agent for the
HFO 1vl task following SDP-PPO on two computers. In
specific, Computer 1 is used to train the networks, run the
management node (Algorithm 4), and maintain the Redis
database. Computer 2 is used to run multiple scoring games
and generate corresponding experiences. The training hard-
ware is specified in Table I and hyper-parameters for SDP-
PPO are listed in Table II.

TABLE I
TRAINING HARDWARE

CPU (Intel Core) | DRAM | GPU (GTX)
Computer 1 15-9600 16GB 1660Ti
Computer 2 15-9600 16GB 1660super

All networks used in our experiments are fully connected
neural networks with 6 hidden layers, which has 128 neurons
with the ReLU activation.

C. Reward Function

HFO is a challenging task with sparse rewards. Dif-
ferent reward shaping methods would greatly affect the
performance of DRL algorithms. For a fair comparison, we
continue to use the reward function proposed in [2] for the
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TABLE II
HYPER-PARAMETERS FOR SDP-PPO

Parameter Value
learning rate for parameter policy 3 x 10~2
learning rate for discrete policy 1x1073
learning rate for value 3x 1073
replay buffer size (Dmax) 2000
maximum episode length 1000

clip ratio (¢) 0.2
discount factor (vy) 0.99

A 0.97
Ncroose 20
Ngeser 120
Preser 0.5
Ncawu 20

offense agent, i.e.,

e = dy_q(a,b) — dy(a, b) 4 1K
+3(di—1(b, g) — de(b, g)) + 5L,

where d(a,b) denotes the distance between the agent to the
ball and d(b, g) denotes the distance between the ball to the
goal. Clearly, the reward function encourages the agent to
approach the ball and dribble the ball close to the goal.
Moreover, I¥* returns 1 if the agent kicks the ball for the first
time and I¥°“ returns 1 if the agent scores the goal. Notice
that, this reward function is still quite sparse and tells no
information for the defense agent.

We specify the following reward function for the defense
agent,

re = 10017 — 10018 — 517,

where I7°°* returns 1 if the goalkeeper holds the ball or

the ball is out of bounds, I¥** returns 1 if the offense agent
scores the goal, I returns 1 if the defense agent leaves
the small penalty area and the offense agent is approaching.
Note that, this reward function is also quite sparse and tells
no information for the offense agent.

D. Experimental Results

We trained an offense agent and a defense agent by SDP-
PPO using self-play for the HFO 1vl task. We not only
compare the performance our offense agent with the ones
by DQN, P-DQN, and MP-DQN on different defense agents,
but also with two manually programed policies, i.e., Helios
Base! and Helios [28].

Fig. 6 shows the learning curves of SDP-PPO and other
DRL algorithms for the offense agent, when the defense
agent is driven by Helios Base. It shows that SDP-PPO
outperforms other DRL algorithms in the task. Notice that,
although the total reward for SDP-PPO is only slightly better
than P-DQN and MP-DQN, the winning rate for SDP-PPO
is 94.6% which is much better than the winning rate for
the both, i.e., 85.0% and 84.2%. Fig. 7 shows the learning
curves of 8§ different versions of the defense agent in SDP-
PPO by the self-play training. Note that, we intend to learn

!Helios used to be the champion of RoboCup 2D soccer and Helios Base
is the open source version of Helios at https://zh.osdn.net/projects/rctools/.

a better offense agent, then the total rewards decrease for
every version of the defense agent during the training.

—40

Mean Episode Reward

NOoO U RN WNKHEO

0 10 20 40 50 60

30
Training Time (Minute)

Fig. 7. Learning curves of 8 versions of the defense agent in SDP-PPO.

Table III summarizes the performance of all algorithms
on the HFO 1vl task in our experiments by 500 trials.
In particular, Random denotes a random policy based on
discretized actions as by DQN. Note that, both the offense
agent and the defense agent in SDP-PPO are only trained by
self-play, without using other defense policies in the training
process. However, other DRL algorithms, i.e., DQN, P-DQN,
MP-DQN, require themselves to be trained in environments
with the defense agent driven by Helios Base.

Table III shows that the offense agent learned by SDP-
PPO outperforms the one learned by other DRL algorithms
in almost all cases, which shows that SDP-PPO is efficient
and learns more robust policies. The only exception is the
case when the defense agent is driven by Helios. This is
mainly due to the fact that Helios has manually programed a
useful policy against the shooting action of the offense agent.
Notice that, the HFO platform and the corresponding actions
for offense are constructed from the open source project
of Helios Base. Then Helios Base, other DRL algorithms,
and our SDP-PPO are based on similar sets of actions.
Meanwhile, different from others, Helios can perform other
fine-grained actions which can be used to generate useful
policies against those actions applied by other methods.

TABLE III
PERFORMANCE OF ALGORITHMS ON HFO 1v1

Defense

. Random | Helios Base | Helios | SDP-PPO
Offense

Random 75.8% 8.20% 4.6% 41.6%
Helios Base 98.2% 88.6% 91.2% 84.8%
Helios 99.8% 99.6% 96.0% 94.8%
DQN 24.0% 82.6% 85.6% 79.2%
P-DQN 83.0% 85.0% 79.4% 83.8%
MP-DQN 80.6% 84.2% 68.4% 87.8%
SDP-PPO 98.4% 94.6% 74.4% 96.8%

It also shows that the offense agent learned by DQN
performs poorly when it competes with the Random defense.
This is mainly due to the certain way that we have used
to discretize corresponding actions for both the offense and
defense agents. It is quite easy for the Random defense policy
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(a) P-DQN offense vs. (b) P-DQN offense vs. (¢) P-DQN offense vs.
Helios Base defense ~ SDP-PPO defense SDP-PPO defense

(d) MP-DQN offense (¢) MP-DQN offense (f) MP-DQN offense
vs. Helios Base de- vs. SDP-PPO defense vs. SDP-PPO defense
fense

(g) SDP-PPO offense (h) SDP-PPO offense

vs. SDP-PPO defense vs. Helios Base de-
fense

Fig. 8. The trajectory of the players and the ball

to choose a discretized defense action to stop a discretized
offense action generated by the DQN offense policy.

Fig. 8 illustrates typical scenarios for different offense and
defense agents, where yellow arrows denote the attack of the
offense, blue arrows denote the move of the defense, and
white arrows denote the moving direction of the ball after
the shooting action.

IV. CONCLUSIONS

In this paper, we introduce SDP-PPO, an extension of
PPO in parameterized action space with the distributed self-
play training. We first extend PPO and propose a new hybrid
actor-critic DRL framework in parameterized action space.
Then we introduce a distributed self-play training framework
for the extended PPO that trains the policy by playing against
a league and separates learning from acting.

We evaluate SDP-PPO in the HFO 1v1 task, i.e., the
scoring task with an offense agent and a goalkeeper. We
compare SDP-PPO with existing DRL algorithms, like DQN,
P-DQN, and MP-DQN. Different from others, SDP-PPO
trains both the offense agent and the defense agent by self-
play, and does not need to use other defense policies during
the training. The experimental results show that SDP-PPO
is effective and learns more robust policies against various
opponents compared to other DRL methods.
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